Learning cellular morphology with neural networks
نویسندگان
چکیده
منابع مشابه
Learning Cellular Automation Dynamics with Neural Networks
We have trained networks of E II units with short-range connections to simulate simple cellular automata that exhibit complex or chaotic behaviour. Three levels of learning are possible (in decreasing order of difficulty): learning the underlying automaton rule, learning asymptotic dynamical behaviour, and learning to extrapolate the training history. The levels of learning achieved with and wi...
متن کاملDesign and Learning with Cellular Neural Networks
The template coefficients (weights) of a CNN which will give a desired performance, can either be found by design or by learning. ‘By design’ means that the desired function to be performed can be translated into a set of local dynamic rules, while ‘by learning’ is based exclusively on pairs of input and corresponding output signals, the relationship of which may be far too complicated for the ...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملLearning of spatiotemporal behaviour in cellular neural networks
In this paper the problem of learning spatiotemporal behavior with cellular neural networks is analyzed and a novel method is proposed to approach the problem. The basis for this method is found in trajectory learning with recurrent neural networks. Despite of similarities, the two learning problems have underling differences which make non-trivial a direct mapping into the problem at hand. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2019
ISSN: 2041-1723
DOI: 10.1038/s41467-019-10836-3